
Device Driver and DMA Controller Synthesis from
HW/SW Communication Protocol Specifications

Abstract. We have separated the information required for HW/SW interface synthesis into three parts, the protocol

specification, the operating system related information, and the processor related information. From these inputs a syn-

thesis tool generates (a) device driver functions or (b) a combination of device driver functions and a DMA controller,

depending on a designer’s decision. The clean separation of information facilitates (1) efficient design space exploration

with combinations of different processors, operating systems and protocols, and (2) maintaining a large number of dif-

ferent versions and variants of HW/SW interfaces by synthesising them on demand.

Protocols are specified as a grammar, which is fully independent of architecture and implementation. From this the

synthesis tool generates device driver code in C and/or synthesizable RTL code in VHDL for DMA controllers. After

the initial selection of implementation alternatives the presented methods are fully automated. Its computational com-

plexity is quadratic in terms of the number of states. With real-life examples we show that the quality of the generated

code is close to hand written quality in terms of performance, area and code size.

1. Introduction

Intellectual Property (IP) based design is emerging to close the gap between steadily increasing capacity,

in terms of transistors on integrated devices, and the design productivity in terms of designed transistors per

time unit. However, the integration of several IP blocks into a system on one chip makes specification and

implementation of interfaces (e.g. bus interfaces and device drivers) a dominant design problem with respect

to design time for embedded systems. For the extreme case where the entire system is composed of IP com-

ponents, interfacing is the only design task. Consequently, we need effective ways to model, refine, and im-

plement communication within an embedded system. To take full advantage of the reuse potential of IP

blocks, be it software or hardware, we must efficiently support a large number of operating systems, proces-

sors, and communication protocols.

A hardware/software interface can consist of up to four parts: (1) device driver functions, (2) direct mem-

ory access (DMA) controller, (3) bus interface, and (4) the register file and handshake behaviour of the device.

A device driver is the wrapper for a hardware device accessed from software. The device driver’s behaviour

essentially is a protocol defining how the device is accessed and synchronized with software. A device driver

can perform all accesses to the device directly or it can use a DMA to transfer data between two places in the

address space. In the latter case the device driver controls the DMA controller who in turn accesses memory

and other devices. A DMA controller can move data between memory and memory, or memory and device.



The behaviour of a controller can either be to move a block of data in one step, or move it word wise synchro-

nized by e.g. an interrupt signal from a device.

Figure 1 illustrates the dependences of a device driver on various other parts, both hardware and software.

We observe that a device driver contains information on: (a) processor architecture and behaviour, (b) real-

time kernel behaviour, (c) device architecture and behaviour, (d) access protocol of the device, (e) application

program interface (API) rules, and (f) DMA controller architecture and behaviour. Hence, device drivers ac-

commodate a very high information density and are dependent on many parts which can appear in a large

number of combinations. This fact is the reason for the low productivity for device driver modelling, four

times lower than ordinary software code [3].

Días et al. [9] present a good example of design using IP components, in which more than 60% of the de-

sign is composed of IP components. We use this to illustrate how time-consuming the task of interfacing the

IP components can be, i.e. design of the hardware/software communication parts of the system. Since this de-

sign uses a standard bus and IP components designed for this bus, the main design effort for the hardware/

software interface are the device drivers. Figure 2 shows a simplified schematic of the system, which is a pay

phone controller. Consider the following design scenario: A system designer needs to evaluate what impact

DMA controllers have on the system performance. This is done by comparing two alternative architectures

of interfaces to the USARTs in Figure 2: (1) no DMA controller, and (2) DMA controllers to interface the

USARTs. The assessment is difficult due to the many dependences and a simple calculation is not accurate

enough. This is supported by the observation that in many practical situations the traffic on the bus is identi-

fied as performance bottleneck only after the system has been built. Ideally the comparison between the two

c. Device driver behaviour

initialize(...);
open(...);
read(..., data) {...}
write(..., data);
close(...);
interrrupt_handler();

RTOS

Application program

Device drivers & Interrupt handlers

00
01
02
03

Bus interface

Device

drv_1 drv_2 drv_3

Device register

th
re

ad
_1

th
re

ad
_2

th
re

ad
_3

th
re

ad
_4

th
re

ad
_5

Processor

Interface logic

b. I/O data to/from application program

d. Device memory and registers

Figure 1. Break down of the HW/SW communication into different parts.

register_1
register_2
register_3
register_4

DMA controller e. DMA controller behaviour

f. DMA controller register file.

a. Device driver entries



alternative architectures would be done by simulation with all the interface details included in the simulation

models. However, without support tools, this is a formidable task because the designer must develop entirely

new interface code for each configuration and component, due to the huge difference between implementa-

tions of a hardware/software communication protocol in pure software and with a DMA controller. This task

is so time-consuming that system designers typically consider a very limited number of design alternatives

and frequently only one. On the other hand, a tool is perfectly capable of generating efficient models for this

purpose from a high level specification of the communication protocols, as will be shown in this paper.

In addition to the evaluation of different architectures there is the task of configuring a system for different

product versions and product generations. For example, in a second version of the product it was decided to

use a different processor and real-time kernel, but the functionality was the same. If the interface code was

written with reuse in mind, i.e. macros for real-time kernel functions, and processor instructions are used in

the code, most of the code can be reused. Only the APIs of the code have to be adapted to fit the new archi-

tecture. But a new processor will require another DMA controller. Thus, the interface code dependent of the

DMA controller has to be redesigned.

Now consider the evaluation and design architecture upgrade tasks with a tool for hardware/software com-

munication. Taking a protocol description of the interfaces the designer maps these onto an architecture, i.e.

real-time kernel, processor, and DMA controller (see Figure 3). The communication synthesis procedure

transforms the protocol descriptions into architecture specific device driver code and application specific

DMA controllers. This enables IP providers to supply a wrapper for IP components. Thus, the designer that

uses these IP components only has to use the tool to generate the interface code for the specific architecture.

The next section presents the related work. Section 3 describes the design flow, target architecture and pro-

tocol modelling in ProGram. Section 4 analyses the architecture dependent parts of device drivers and pro-

U
S

A
R

T

U
S

A
R

T

U
S

A
R

T

U
S

A
R

TDisplay
controller

Keyboard
controller

I2C
interface

Real-time
clock Timers

Figure 2. Simplified schematic of the pay phone controller system.

ARM7 Memory Counter
array

DMA
controller

Figure 3. Mapping of hardware/software communication protocols onto selected architecture.

Processor

Real-time kernel

Device driver

DMACHW/SW com.
protocol



poses a way to represent them. Section 5 and 6 present the proposed synthesis methods for software and for

a software/DMA solution, respectively. Section 7 contains descriptions and results from the examples used

to evaluate the methods.

2. Related work

Recently, much attention has focused on the problem of communication synthesis for embedded real-time

systems [28]. But none of them has fully addressed the problem described above. CoWare [4], Polis [2] and

Cool [23] concentrate on the case where the whole design functionality is captured within their environment

and then communication is refined during system synthesis, i.e. the device drivers are generated together with

the custom HW and the operating system. But if the user wants to use IP blocks and off-the-shelf real-time

operating systems (RTOS), he/she will face the same problems as with manual design [31].

CoWare [4] is a design environment for heterogeneous hardware/software systems on a chip. CoWare ac-

cepts heterogeneous communicating processes, which are specified in DFL, VHDL or C. CoWare’s main fo-

cus is system integration and handling of communication in embedded systems. The heterogeneous

specification is mapped onto different processors (DSP, micro controller or hardware). Inter process commu-

nication is done with point-to-point communication channels. The inter-process communication semantic is

based on remote procedure call. Hardware/software communication channels are mapped onto a fixed archi-

tecture. This architecture is based on several library models implementing different I/O scenarios. For soft-

ware, the communication procedures are captured as parameterized C functions that are mapped onto a

software model, i.e. they adapt to processor specific I/O handling, interrupt handling, etc. For hardware, a

hardware interface cell is generated to connect with a handshake protocol to an I/O control unit. This I/O con-

trol unit is a link between the processor and the handshake protocol.

Polis is focused on control-dominated applications with system architectures composed of a single proces-

sor surrounded by custom or library hardware. Polis uses Codesign Finite State Machines (CFSM) as the in-

ternal representation for a system description, separating communication, behaviour and timing of the system.

The communication model is globally asynchronous, locally synchronous, with non-blocking finite buffers

between CFSMs. C code and HDL code are generated from the CFSMs mapped to software and hardware,

respectively. Except for the I/O drivers and code generated from the CFSMs, the software code consists of a

generated application-specific operating system for the selected processor. All communication within soft-

ware or between software and hardware occurs through shared memory, I/O ports or memory-mapped I/O.

The synthesized hardware includes the address decoders, multiplexers, latches and glue logic. Special-pur-

pose hardware must follow a simple, data/strobe based protocol in order to be interfaceable with other CF-

SMs.



In contrast to both CoWare and Polis, our approach uses abstract, implementation independent protocol

specifications, and is targeted specifically towards gluing IP blocks and third party RTOS together.

In Chinook [5,6], the definition of a device driver also includes the bus interface. The driver/interface is

described in a timing diagram description (SEQ), this captures both the behaviour and timing constraints for

the interface. The description is synthesized into low-level software code accessing the device via the ports

of a micro-controller together with the required glue-logic. The synthesis procedure tries to find the cheapest

implementation (smallest amount of hardware) with regard to both timing constraints and resource con-

straints. Ortega et al. have in [27] expanded this approach to communication synthesis for distributed systems,

i.e. from a behaviour description and an architectural mapping they synthesize interfaces for different bus

structures, e.g. CAN and I2C.

MakeApp [14] is a tool for generating device drivers for different devices and processors matching user

defined configurations. Both Chinook and MakeApp solve only part of the problems described in [31], since

they do not support DMA and generate code only for a specific real-time kernel (Chinook) or no kernel

(MakeApp).

Jerraya et al. use SOLAR [17] as an intermediate language, it supports system level modelling and synthe-

sis. The communication semantics are based on the concept of remote procedure call communication via send/

receive operations, similar to CoWare. Types of protocols supported include blocking and non-blocking com-

munication. A channel is implemented by allocating communication units from a library [7]. These library

units are composed to fulfil a set of constraints put on the channel. The library consists of a set of communi-

cation services and protocols along with their implementations (a mixture of hardware and software). Inter-

face synthesis techniques are used to permit communication between the processor and the chosen

communication units.

Eisenring et al. [11] present a method for modelling the target architecture by means of object oriented

methods. The architectural model is used to generate hardware/software interfaces from data flow descrip-

tions. LYCOS [16], COSYMA [12] and Vahid et al. [32] propose to solve the hardware/software communi-

cation by supplying a communication library. However, this only moves the problems of designing and

maintaining device drivers from the designer to the provider of the library. The only approach that handles

the mapping of hardware/software communication on to DMA controllers is described by Eisenring and Teich

[11], but their approach is limited to a set of standard APIs.

Öberg et al. present a communication protocol synthesis tool that specifies the design in a special purpose

language ProGram [34], which is based on context free grammar, the synthesizable subset is limited to regular

grammar with attributed conditions. The specified protocols are synthesized into hardware. Seawright et al.

[29] have a similar approach but instead of grammar they use a graphical version of regular expressions to

specify the behaviour. This work has resulted in the commercial tool DALI. It uses a graphical interface for



entering the hierarchical production rules, called frames, together with their actions. Actions are described

using a host language, VHDL or Verilog. All inputs and outputs in the design entity are exactly described at

clock cycle level. The output is an FSM described in VHDL.

We adopt Öberg’s approach to specify communication protocols in ProGram and apply it to the specifica-

tion and synthesis of the software part and DMA controllers in hardware/software interfaces. The synthesis

tool requires a behavioural description of the protocol and a mapping to a particular architecture. The relevant

information about architecture elements, HW or SW, are captured in two libraries. All the implementation

details of the device driver and DMA controller are automatically synthesized. The communication synthesis

tool is also capable of generating simulation code for commercial hardware/software co-simulators [26].

3. Methodology

In a system design methodology based on the reuse of IP-components, our method generates the imple-

mentation for a given access protocol (i.e. hardware/software interface) and maps this onto a defined archi-

tecture. The access protocol is implemented either as a pure software device driver or as a device driver with

a DMA controller. This decision is made by the designer for each concurrent ProGram production rule. Inputs

to the hardware/software interface synthesis procedure are the access protocol (ProGram) and libraries cap-

turing processor and kernel specific parts. ProGram specifications are either delivered by the IP provider or

the designer writes them. The ProGram specification defines the ports to the application, the ports on the de-

vice and the protocol behaviour. In this paper we concentrate on the device driver and DMA controller part

of the access protocol and we do not discuss the synthesis of the bus interface.

We specify device drivers independently of the architecture using ProGram [25]. ProGram is a grammar

based notation for protocol applications, which is inspired by YACC [18]. Specifications in ProGram deal

with sequences of allowed events as opposed to states and state transitions in an FSM model. In contrast to

parsers for compilers ProGram allows for several concurrent input and output streams. The ProGram descrip-

tion is synthesized into a set of untimed extended state machines [25,34], which is the input to the architecture

mapping procedure described in sections 5 and 6.

Figure 4 shows that the mapping procedure uses data from two libraries to generate the architecture specific

code. The first library captures the information on the operating system architecture (OSLib) and the second

library captures the processor specific characteristics (ProcLib). This organization carefully separates proto-

col specification from operating system and processor dependences. With this input the tool can generate

three alternative implementations: (I) pure software implementation, (II) code for mixed hardware/software

solutions with a DMA controller, and (III) multi-level simulation models. With multi-level simulation models

we mean the generation of device drivers for simulation. That is, device drivers for emulation of the hardware



behaviour used in software simulation or device driver for hardware/software cosimulation of the system. In

this paper we discuss only alternative I and II, and refer the reader for further details about the multi-level

simulation methodology to [26].

3.1. Target architecture

Our approach to device driver synthesis supports two alternative target architectures: (1) pure software im-

plementation and (2) software together with a generated DMA controller, see Figure 4. For both target archi-

tectures we assume that the device has already been interfaced to the system bus with a bus interface.

Software implementation: For pure software implementation, access functions and interrupt routines are

implemented as software functions in C, which are mapped to fit the selected real-time kernel and processor.

For the appropriate call of the interrupt routine an interrupt handler is generated.

With DMA controller : The combined DMA and software based architecture is used when the designer

has selected one of the state machines to be implemented as a DMA controller which controls the data transfer

between a hardware device and memory. This is the preferred solution if high peripheral data rates must be

achieved, and performance and bus utilization are critical.

3.2. Protocol modelling in ProGram

A ProGram model defines the possible event sequences on several parallel inputs in terms of a grammar

[34]. Actions, which are associated with grammar rules, define the reaction to input events and the event se-

quence on the output ports. A ProGram description consists of three parts: (1) interface declaration, (2) tokens

Communication protocol
description in ProGram

Extended FSMs

Synthesize FSMs
Library information captured for
the supported SW architectures:
- function declarations,
- data types,
- kernel functions

Library information captured for
the supported processors:
- processor specific routines,
- processor characteristics,
- bus models

MemoryD
ev

ic
e 

dr
iv

er

D
ev

ic
e Device

D
ev

ic
e 

dr
iv

er

A
pp

lic
at

io
n

A
pp

lic
at

io
n

Processor Processor

Figure 4. Overview of the device driver synthesis system.

DMA controller

OSLib

Multi-level simulation
models

I. II.

ProcLib

Map Device Drivers onto
the specified architecture

III.Architecture mapping
decisions



and memories, (3) grammar rules and actions. ProGram handles only bit vector types.

Interface declaration: The interface declaration describes the interface to the application and the device.

There are four types of ports to describe the device driver interface: (1) ports to the application (sw), (2) reg-

isters of the interfaced device (hw), (3) internal signals (internal) and (4) interrupt signals from the device (in-

terrupt). In addition to the type a port declaration contains name, direction and bit width. A port declaration

of a device register requires also the register’s relative address.

Tokens and memories: A Token is a pattern of bits read from an input stream or written to an output stream

and can also be viewed as a constant. Reading and writing tokens are the primary events. Memories and var-

iables can be defined to maintain a state and to communicate between concurrent activities of the protocol

implementation. The size and layout of memory fields can be defined.

Grammar rules and actions: The grammar description begins with one or several start rules. They define

concurrent activities and work in practice as process declarations that define the signals used for the start con-

dition, read in Figure 5 is such a start rule. The synthesis process generates for each start rule an access func-

tion or an interrupt routine. The read rule in Figure 5 would result in an access function.

Actions in the grammar specify assignment of values to signals, i.e. the parts enclosed by curly brackets in

Figure 5. Expressions to compute these values may be put directly in the assignments or may be associated

with some symbols in the action value section. The assignments can then simply refer to these symbols. The

expressions allow concatenation and conditionals in addition to the usual arithmetic and logic operations. The

operands can be constants, signals, other action value symbols or bit patterns recognized by grammar sym-

bols. A grammar rule consists of a grammar symbol that serves as a rule identifier and a list of alternatives;

e.g., the alternatives for thewaitReady rule in Figure 5 are zero and one. Each alternative is a sequence of

non-terminal symbols, terminals and actions. Passing the new signal stream as a parameter to the subtree of

productions redirects the input stream.

4. Architecture characteristics and modelling

To describe why different parts of the device driver are modelled in libraries we first analyse the architec-

ture dependent parts of a device driver. Then we describe the modelling of operating system and processor

characteristics for synchronization, execution delays, interrupt handling, mutual exclusion, direct memory ac-

cess and the device driver interface.

Figure 5. Example of grammar rule with actions.

read: bit { tmpCNTR(2..0) = channelNo; } bit {CONTROL = tmpCNTR;} waitReady;
waitReady(int): 1 waitReady

| 0 { readData = HIGH LOW; };



4.1. Analysis of device drivers

To identify what parts of the hardware/software interface that need to be mappable during interface syn-

thesis, we analyse the architecture dependent parts of the device driver.

Synchronization with external events: Synchronization of device drivers with external events can be im-

plemented in three ways, as illustrated in Figure 6: (a) polling of device signals, (b) wait for a fixed time (when

the device is known to generate an event), or (c) wait for an operating system event generated by an interrupt

that is triggered by the device. Polling is the only one of these three synchronization schemes that can be im-

plemented independent of the software kernel.

Synchronization with internal events: Internal synchronization, i.e. synchronization between the device

driver parts, is implemented using the semaphore facilities of the kernel. To prevent deadlocks the sender and

receiver of the internal synchronization events have to be located in different execution flows. Hence, a sender

has to be located in an interrupt routine and the receiver in an ordinary access function, since wait operations

are not allowed in interrupt routines.

Delay execution: In some situations a device driver has to halt itself for a certain amount of time. This

could be necessary when waiting for an analog-digital conversion, but also to wait for coprocessors during

the initialization process. The wait function is provided by a kernel, hence this function is architecture de-

pendent.

Interrupt handling : Interrupt service routines can be used to synchronize a device driver with a hardware

event as described above. Sometimes they are also independent routines with their own behaviour, e.g. when

an interrupt handler receives data from a communication device and writes it to a buffer. There are two pos-

sible ways to implement this: (a) the interrupt service routine informs the task about the event when the inter-

rupt is activated and the task handles the action; (b) the interrupt routine performs the action itself. Interrupt

handling is dependent on both the processor and the kernel. Since there is no standard way to write interrupt

routines in high-level languages we use an assembler entry. There is also a kernel dependence in the case of

devicePending
for time to

pass
Interrupt
handler

event

a.
b. c.

Figure 6. Synchronizing with external device.

OS

Time
passeddevice

Start

devicePending
for event

Action

Action

Start

Action

Start

= State transition
= Signal or data

Pending
for signal



a preemptive kernel; for this case the interrupt handler has to notify the kernel when entering an interrupt rou-

tine using kernel specific routines.

Mutual exclusion: There are two possible ways to prevent several application threads accessing the same

device simultaneously: (1) by means of semaphores and (2) by disabling the interrupt mechanism. Both have

their advantages and disadvantages. Disabling interrupts is fast and does not add overhead to the execution

but it disables the normal behaviour of the kernel. That is, the system will be executed as a single thread and

no scheduling will occur. Semaphores do not affect the kernel behaviour but introduce communication over-

head. Hence, one should use semaphores for complex device drivers and disable interrupts for simple ones.

Both methods for controlling mutual exclusion are architecture dependent. To prevent this the control can be

placed outside the device driver, as in Figure 7a. The cost of this is less structured code compared to the so-

lution in Figure 7b, where the control is placed inside the device driver.

Device driver interface: The device driver interface defines the driver component naming style and how

in and out parameters to the device driver are handled. For device drivers developed for single threaded soft-

ware with no operating system or systems with small real-time kernels likeµC/OS or RT-kernel, the device

driver interface is determined by the designer, project or company coding style. For other systems with ker-

nels/operating systems like UNIX, OS9, VxWorks and OS/2 the interface to the application/operating system

is defined by the operating system [31].

DMA controllers : DMA controllers are used to decrease the processor load, and to speed-up the transfer

of large amounts of data. This is achieved at the cost of additional hardware and reusability of the device driv-

er code, since the code not only depends on the kernel and processor but also on the DMA controller, since

each DMA controller has its own unique architecture and behaviour. A DMA controller can move data be-

tween memory-memory or memory-device. From the software view, the controller is a set of registers for set-

ting address pointers and controlling the behaviour. The behaviour can either be to move a block of data in

one step, or move it word wise synchronized by e.g. an interrupt signal from a device. When a DMA transfer

is finished, the controller synchronizes with the software by triggering an interrupt.

Task n

Device
driver

Task n+1

Acquire
Semaphore

Task n

Device driver

Task n+1

Acq
uir

e

Sem
ap

ho
re

Figure 7. Handling mutual exclusion. (a) Mutual exclusion control outside device driver. (b) Mutual exclusion
control inside device driver.

a. b.



4.2. Modelling the software environment

To map architecture dependent parts of a device driver to a specific architecture, the characteristics and

behaviour of the architecture are captured in two libraries, OSLib and ProcLib. They capture the operating

system specific and processor specific parts, respectively (Figure 4).

The model of the software environment (i.e. the kernel’s characteristics and functionality) used in OSLib

is divided into three parts: (1) the environment characteristics, (2) the interface to the application/OS, and (3)

the macros for accessing system services.

SW environment characteristics: This part contains the environment name, type, timing, and include files

needed for this kernel. The type is captured since it affects the behaviour of the interrupt routines. Character-

istics captured by OSLib are defined in Table 1.

SW environment interface: With SW environment interface we mean the naming style of the different

device driver functions and how data is transferred to and from these functions. The interface model is com-

posed of three interface scripts for generation of function declarations: (1) interrupt service routine, (2) device

driver function, and (3) task function. These scripts generate the function names and parameter declarations.

There is an additional translation table for type conversion, i.e. for translation of bit vector types to C data

types.

SW environment services: SW environment services are kernel functions for semaphore and interrupt

handling. Modelled services are discussed in Section 4.1 and the system functions to provide these services

are enumerated in Table 1.

Type Library entry Comment

Characteristics name Name of the real-time kernel
kernel_type {preemptive, not-preemptive, single thread}
tick_time_period Time between two clock ticks
interrupt_supported {true, false}
header_files A list of header files needed by the kernel

API generation interrupt_routine_def Script for generating interrupt routine declaration
access_routine_def Script for generating access driver routine declaration
task_def Script for generating task declaration
type_conversion_table Table for converting bit vector to C data types

Services enable_interrupts Function for enabling interrupts
disable_interrupts Function for disabling interrupts
create_binary_semaphore Function that generates a binary semaphore
delete_binary_semaphore Function that delete a binary semaphore
pending_semaphore Function for pending a semaphore
set_semaphore Function for sending an event with a semaphore
pending_time Function for waiting for a specified time
enter_interrupt Function for informing kernel of interrupt service start
exit_interrupt Function for informing kernel of interrupt service end

Table 1. Library structure used in OSLib to capture a real-time kernel.



4.3. Modelling of processor features

The model of the processor (i.e. the processors’s characteristics and functionality) used in ProcLib is di-

vided into three parts: (1) the processor characteristics, (2) processor specific routines, and (3) DMA compo-

nents.

Processor characteristics: The captured processor characteristics are the (a) processor name, (b) the in-

ternal and external data bus width, since these will affect the address calculation of the device addresses, and

(c) the device access type, i.e. if it uses a port mapped or memory mapped device access method (Table 2).

Processor specific routines: Processor specific code necessary for device driver generation is code for sav-

ing and restoring of registers, code for enabling and disabling of interrupts. The last is used if the kernel does

not support this feature. Table 2 defines the processor specific code captured in ProcLib.

Master interface: This is an interface between a fixed protocol (defined in Figure 8) and the captured proc-

essor’s bus protocol. The port with fixed protocol on the interface is the one connected to the generated part

of the DMA controller. A data access is initiated from the DMA controller who activates the master interface,

which then obtains control over the processor bus and performs the data access.

On one hand it implements the processor specific bus interface, and on the other hand it implements the

master interface protocol to communicate with the generated DMA controller. The master interface commu-

nicates with the generated parts with a fixed protocol, which is defined in Figure 8. Hence, this approach is

independent of bus organization and arbitration controller, since arbitration handshake and bus specific be-

haviour is implemented by the master interface, not by the generated parts of the DMA controller.

The master interface component in Figure 8 uses a 2-phase request/acknowledge protocol. The protocol is

synchronized with the bus clock used for the processor bus. A read/write cycle starts with the request (req)

Type Library entry Comment

Characteristics name Name of the processor
device_access_type {memory mapped, port mapped}
internal_data__bus_width {8,16,32}
external_data_bus_width {8,16,32}

Routines push_proc_register Instruction to store processor register on stack
pop_proc_register Instruction for restoring processor register from stack
enable_interrupts Instruction for enabling interrupts
disable_interrupts Instruction for disabling interrupts
return_from_interrupt Instruction for returning from interrupt
function_call Instruction for calling functions
read_port_mapped Instruction for reading port mapped
write_port_mapped Instruction for writing port mapped

DMA components master_interface Interface for the accessing processor bus
slave_interface Memory interface for accessing a register file

Table 2. Library structure used in ProcLib to captured the processor specific parts.



signal driven high, therw, sizeandaddresssignals are driven to the appropriate values. A cycle is terminated

by detection of the ready (rdy) signal at the positive clock (clk) edge. Read data (data_in) is valid only at the

positive clock edges and when therdy signal is high. Write data (data_out), address, sizeand rw signals

should be valid before the positive clock edge whenreq is high and until after the positive clock edge when

rdy is high. Thesizesignal indicates the size of the transfer, i.e. it is up to the master interface to implement

the reading and writing of data.

Slave interface: The slave interface is a simple memory interface that is used to enable access to the gen-

erated DMA register file (described in Section 6) from the software parts of the device driver. The register

file is accessed through an ordinary asynchronous memory interface (similar to a static RAM withread, write

andchip_selectsignals). In this way the set-up functions can initialize the base address and the access func-

tions can write and read back the internal variables and pointers.

5. Software synthesis

From the ProGram description of the device driver several untimed FSMs are synthesized using the same

technique used for generating HW interfaces [34]. From there the implementation is created in four steps: (1)

translation of the bit vector data types used in the ProGram and FSM representations into C/C++ data types;

(2) transformation of the state machines into state machines suitable for software implementation; (3) optimi-

zation of the state machines; (4) mapping of the state machines onto the selected processor/real-time kernel,

generation of the application program interface, and generation of C code. These steps are indicated in the

synthesis procedure depicted in Figure 9.

Map data types: Data types in the ProGram description and the generated FSM descriptions use a bit vec-

tor data type. A table in OSLib defines the translation of bit vectors into C types. This table describes how the

translation from a bit vector of a specific width is represented in C.

Transform : The synthesis procedure has two transformation rules for identifying synchronization: (1) one

req

rdy

rw

address

data_in

clk

data_out

µProcessor bus

Figure 8. Master interface component and its access protocol.

write cycle

read cycle

address address

Μaster
interface

size8/16/32 8/16/32



for external synchronization and (2) one for internal synchronization. The objective of these rules is to trans-

form the FSM behaviour to fit a kernel based software architecture, i.e. use the semaphore capability of the

kernel for synchronization. As seen in Figure 9, both these transformation rules are applied to all states in syn-

thesized state machines.

Synchronization points in a ProGram description are translated into self-loop states in the generated FSM,

which is waiting for a synchronizing event. If a self-loop is found in one of the FSMs and its state transition

conditions (condandc1...cm) fulfil the constraints defined in Table 3, the state with a self-loop is transformed

according to Figure 10 and Table 3. That is, the self-loop state transition is removed and replaced with a wait

(semaphore event) statement. Depending on the condition constraints, the state is transformed into an internal

or external synchronization point. With external synchronization we mean synchronization with an interrupt

signal generated by the interfaced device; with internal synchronization we mean synchronization between an

access function and an interrupt routine.

A common constraint for both external and internal synchronization is that thecondcondition (the condi-

tion for self transition) should be formed by sensing if one signal (of bit width one) is zero or one. All other

procedure generate_sw_implementation
for all Signals

signal.map_bit_vector_types(OSLib)
end for
for all FSMs

for all FSM.States
state.apply_transformation_rules(OSLib, ProcLib)

end for
FSM.minimize_no_states()
FSM.minimize_no_goto()
case (type of FSM)

ACCESS : FSM.gen_function(OSLib)
INTERRUPT : FSM.gen_int_routine(OSLib)
TASK : FSM.gen_task_function(OSLib)

end case
end for
end procedure

Figure 9. Synthesis procedure for transforming the FSMs to FSMs for SW implementation.

1

4

2

3

Map data types

Transform

Optimize

Map and generate code

Sn

cond

c1
c2
cm

c'1
c'2
c'm

transformation
... ...

Sn
... ...

Figure 10. Template for transformation rules, where m is the number of transitions from state Sn.

event



conditions (c1...cm) should be complementary to this condition. The type of synchronization depends on the

type of the signal. If the signal in thecondcondition is an interrupt signal, then an external synchronization

point is detected; if it is an internal signal, then an internal synchronization point is detected. These constraints

are formally described in Table 3.

For all synchronization points the self-loop transition of the state, fitting the transformation rule, is re-

moved and replaced with a wait for software event routine (semaphore) in the code part of the state. For the

external synchronization point the event is sent by a generated interrupt routine and for the internal synchro-

nization point all assignments (from a specified interrupt routine) to the event are replaced by semaphore ma-

nipulation routines. Figure 17 shows an example of a transformation for an external event.

Optimize: Apart from transforming the state machines to fit software architectures, the synthesis proce-

dure optimizes the state machines for software implementation with respect to size and speed. Optimizations

done are minimization of the number of states andgotooperations. Both these optimization methods aim to

minimize the code for the state transitions and, thus, decrease the code size and typically increase the perform-

ance. Minimization of the number of states in an FSM is done when the state machine is generated from the

ProGram description. In the “optimize” step, state minimization goes further by removing states not necessary

for software implementation, e.g. delay states. A delay state is a state whose only function is to preserve ex-

ecution order i.e. it has one entry and one exit transition. The execution order in software is ensured by merg-

ing the code of the removed state to the beginning or end of the code block of the succeeding or preceding

state, respectively. The optimization is partly illustrated in Figure 17. The optimizations effect on size de-

pends on the protocol, if the state machine has many actions the code implementing the jumps will be smaller

relatively to the code size. Thus, the effect of the optimization will be smaller. This is also true for the per-

formance, but jump instructions often cost more in execution time relative to other instructions and they are

executed several times. That is, the optimization is more likely to be effective with respect to performance

optimization.

The synthesis procedure generates C code and the state machines are implemented withif andgotostate-

Transformation rule Constraints Transformations

External synchronization •width (sig) = 1
• sig is an interrupt signal
• cond∈ [(sig=0) | (sig=1)]
• cond = [c1∨ c2∨ ... ∨ cm]

• Remove self-loop transition
• Insert wait on semaphore in code of Sn

• Add an interrupt routine that sends an event to
wait statement

Internal synchronization •width (sig) = 1
• sig is an internal signal
• cond∈ [(sig=0) | (sig=1)]
• cond = [c1∨ c2∨ ... ∨ cm]

• Remove self-loop transition
• Insert wait on semaphore in code of Sn

• Replace assignments to sig with semaphore
manipulations

Table 3. Transformation rules used in the software synthesis process.

¬

¬



ments. By ordering the states in the code that implements the state machine the code for state transitions is

minimized. By ordering states properly according to their execution sequence unnecessarygotostatements

can be avoided and code size and performance will improve. Thegotominimization is performed such, that

transitions that can be implemented by placing the states adjacent to each other, are placed first and remaining

states are placed randomly.

Generate and map code: When the state machines are transformed and optimized for software implemen-

tation, the protocol description has to be mapped onto the processor and real-time kernel. This is done at the

same time as the code is generated. The code generation has two different components to generate code for;

(1) access functions and (2) interrupt routines. To activate the interrupt routines there is an interrupt handler

that also has to be handled by the code generation. The application program interface to a device driver is a

set of functions used to access the device. The layout of these APIs are determined either by the design rules

or by the kernel. In the synthesis procedure the API is generated from the rules that determine how data should

be passed between the application and device driver together with the scripts that generates the function name.

The function prototype of the access functions, i.e. function name and parameters, is generated as described

above by using scripts in OSLib. The body code of the access function consists of routines for mutual exclu-

sion taken from the OSLib and the C code for the FSM. The code implementing the FSM uses kernel specific

routines for synchronization handling from the OSLib library.

The interrupt handler that responds to the interrupting device activates the interrupt routine. Interrupt type

state machines are translated into interrupt routines. An interrupt routine has no parameters since the interrupt

handler activates it without parameters. Thus, code for the interrupt handler is a parameterless function pro-

totype and the code which implements the state machine.

Entry and exit of an interrupt handler must be in assembly language, since there is no support in C for the

necessary operations. The generated code for an interrupt handler starts with storing and ends with restoring

the processor registers. For a preemptive kernel the interrupt should also notify the kernel when it enters and

leaves the interrupt routine.

The code generation ends with the generation of an initialization function. This function creates and ini-

tializes the semaphores used by the other components. It also sets the addresses of the different device regis-

return_type function_name (parameters) {
Wait for device to be released
Lock device access
Code generated from FSM
Free device access

}

Generate access function API
defined by OSLib

Library elements, for mutual
exclusion, defined in OSLib

Figure 11. Code structure for an access function



ters. The initialization function takes the device base address as a parameter. The code generation also

generates the declarations of semaphores and device register pointers.

A complexity analysis of the implementation of pseudo code for the synthesis procedure in Figure 9 shows

a run time complexity ofO(n2), where then is the number of states for the whole description. This has also

been verified by exercising the synthesis procedure with a set of random examples of different complexity

[24].

6. DMA controller synthesis

Synthesis of DMA controllers from parts of a device driver description is a complement to the software

synthesis in Section 5. The API for a device driver implemented in software and with a DMA controller is the

same as for a pure software implementation, i.e. the only difference is the implementation of the behaviour.

The DMA implementation has apart from the software code a generated DMA controller. The DMA control-

ler consists of four blocks (Figure 13): a master interface, a slave interface, a register file and a controller. The

controller and register file are both generated from the ProGram description. The register file contains point-

ers and variables used by the device driver. The controller is a transformed state machine generated from the

ProGram description. Before the synthesis of the controller part, the designer has to select which of the device

driver state machines should be implemented in hardware as a DMA controller. Both interrupt and access type

state machines are candidates for DMA implementation. When this is done the synthesis procedure generates

the DMA controller in three steps; FSM transformation for synchronization, FSM transformation for data ac-

cesses and generation of register file.

int_handler_name:
Save registers
Enter interrupt
Call int routine
Exit interrupt
Restore registers
Return from interrupt

Generation of int. handler name defined in OSLib

Push and pop registers from stack, from ProcLib.

Figure 12. Code structure for an interrupt handler.

Enter and exit interrupt from OSLib

Return from interrupt (ProcLib)

Routine for calling interrupt routine, from ProcLib.

Controller

Register file

Master
interface

Slave
interface

Interrupt signal

Processor bus

Interrupt signal
from device

to processor

Figure 13. Architecture for the generated DMA controller.



FSM transformation for synchronization : There are two types of synchronization considered here; start

and stop of the whole DMA state machine and synchronization within state machines. The transformation

rules are formally described in Table 4. Synchronization of access type state machines is done in four stages

(see Figure 14): (1) in the generated software part of the access function the parameters are downloaded to

the register file of the DMA controller. (2) send start signal to the DMA controller, sensed by an inserted wait-

state. (3) when the DMA controller state machine reaches the exit transition, exit transition is redirected to the

idle state, sends an interrupt to a generated added interrupt routine. (4) The generated interrupt routine sends

an event to the waiting software part of the access function. Control of start and stop of interrupt type state

machines is handled by inserting a wait-state before entering the state machine. The wait-state senses the in-

terrupt signal from the device and makes a transition to the original part of the state machine when the inter-

rupt signal is asserted.

Transformation rule Constraints Transformations

Access function control • FSM of access type • Generate SW function and interrupt handler
• Add idle state before entry state of the state

machine.
• See Figure 14.

Interrupt routine control • FSM interrupt routine type. • Insert an idle state before the entry state in state
machine.

External synchronization • same as in Table 3 • Interrupt signal from device is used as
synchronization signal.

Internal synchronization • same as in Table 3
• sender is a DMA controller

• Set interrupt signal to processor.
• Add an interrupt routine that receives

interrupt and sends the software event.

Internal synchronization • same as in Table 3
• receiver is a DMA controller

• Wait for control signal to be asserted
• Assert control signal instead of send event

Table 4. Synchronization transformation rules used in DMA controller synthesis.

Access function in SW

Access function implemented with DMA

sw_func_dma(param) {
write_address_to_dma(param);
start_dma = (0x1) << cntrl_bit;
wait_for_event(dma_finished);
read_results}

void DMAIntRoutine(){
send_event(dma_finished);
} FSM from

ex
it

idle

Access function with DMA Interrupt handler for
synchronization

FSM as a
DMA controller

ProGram

event (finished)

event (start)

start

void sw_func(param) {
FSM from ProGram implemented in SW}

Figure 14. Access function implementation in software and with SW/DMA.



Implementation of synchronization points within and between state machines, i.e. external synchronization

and internal synchronization, is handled differently for state machines implemented as DMA controllers. Ex-

ternal synchronization, i.e. synchronizing with an event via an interrupt routine, is implemented by sensing

the interrupt signal from the device directly in the state machine. Two different cases of internal synchroni-

zation exist: the event sender is a DMA controller and the event receiver is a DMA controller. For the first

case, instead of semaphore manipulation, the interrupt signals to the processor are asserted. The interrupt is

received by an interrupt routine that sends the event to the receiver as a software event. For the second case,

the receiver of the event will wait for a control bit to change instead of waiting for a semaphore event. The

sender, i.e. a software function, of the event asserts the control bit.

Transformation of data transfers: Data in memory and device registers have to be accessed through the

processor bus. Thus, the state machine has to communicate with the master interface to access the memory

and device. This is achieved by inserting a state for reading or writing data, see Figure 15.

For a data-read, data is read into a register by inserting a read state that reads the data via the master inter-

face. The state is inserted before the state where the data is used. Assignment of variable/register is done by

inserting a write state after the state where the data is written. Thus, data is written via the master interface

These two transformation rules are formally described in Table 5.

Generating the register file: A register file for accessing the device registers and memory data is gener-

ated. The register file contains: device addresses (Figure 16a), internal variables, external variables and vector

addresses (Figure 16b). A control register for monitoring the state of the DMA controller and for synchroni-

zation is also generated (Figure 16c).

The device access registers are used to generate the device register addresses in the DMA controller during

execution. There is one base register that stores the device base address and several offset registers (one for

Data read • External value (memory location
device register) used in expression.

• Insert read state (see Figure 15a) before the
state that fit the constraint.

Data write • Data assigned to memory or device
register.

• Insert write state (see Figure 15b) after the
state that fit the constraint.

Table 5. Data access transformation rules used in DMA controller synthesis.

when state_n1 =>
req <= ‘1’; rw <= ‘0’; size <= “00”;
address <= pointer + offset;
data_out <= tmp;
if (rdy = ‘1’) then

req <= ‘0’;
next_state <= state_n2;

end if;

when state_n1 =>
req <= ‘1’; rw <= ‘1’; size <= “00”
address <= pointer + offset;
if (rdy = ‘1’) then

req <= ‘0’;
next_state <= state_n2;
tmp <= data_in;

end if;

a. b.

Figure 15. States for accessing external data.



each device register). The address of a device register is the sum of the base register and the offset address for

a specific device register. The base register has the same bit width as the processor address bus, and the reg-

ister offset is set to . Internal signals are either internal variables or pointers to vec-

tors. The internal variables have the same bit width as specified in the protocol description and the pointers

have the same width as the processor address bus. Addresses to vector elements are generated in the same way

as device register addresses, but as a sum of the vector pointer and the index variable. The control register’s

least significant bit indicates if the base register address is written or not. If this address is not written, the

controller can not serve any interrupts from the device since the controller does not have the address to the

device. The remaining bits are used for synchronization between different parts of the device driver.

7. Examples

We present results from hardware/software interface protocols to five different components: three standard

components (MAX197 [20] a 8 channel 12-bit ADC, MAX530 a 12-bit DAC [21] and TL16552 [30] a 2 chan-

nel UART) and two system design case studies, i.e. channel decoder in a D-AMPS base station [10] and a

operation and maintenance unit (OAM) of an ATM switch on the F4 level [8].

7.1. An illustrative example

In Figure 17, a design example is transformed from a ProGram description into a software implementation.

Part (a) of Figure 17 shows the ProGram protocol description, this is further described in section 3.2 and fig-

ure 5 where the very same example is used. The ProGram description starts with an assignment and it then

waits for an event to occur (waitReady ). When the event is received, data from the component is read (re-

adData ). Part (b) shows the result from the translation from ProGram to an FSM. The first bit statement and

assignment are together represented by S0. S1 covers the second bit statement and assigment. The wait for an

event statement is translated into the self-loop in state S2. Finally, state S3 is the exit-state. Parts (c) and (d)

show the transformed and optimized state machines, respectively. In the transformed state machine the self-

loop is replaced by a wait for a semaphore event, this is sent by an interrupt routine that is activated by the

int  signal. Part (e) of Figure 5 shows the generated code.

2 size deviceRegFile( )( )log

data register

Pointers to data arrays

Register offset

Device base register

a. Device access registers b. Internal signals and pointers

Control register

c. Control register

Figure 16. Register file for the DMA controller.



7.2. HW/SW communication of a IS-54B base station channel decoder

D-AMPS [10] (IS-54B) is a North American digital cellular standard developed in the late 80’s by the Cel-

lular Telecommunications Industry Association. Each radio channel in D-AMPS has 30KHz bandwidth and

is segmented in time into six slots using time division multiple access (TDMA), whereas 2 slots make up one

voice circuit. The channel decoder, see Figure 18, receives 272 bit frames that should be processed in 6.67

ms. The process consists of: de-interleaving, Viterbi decoding, CRC-sum calculation, bit error rate estima-

tion, sorting of speech data, and masking of bad speech frames.

We have selected a hardware/software partition from an industrial implementation, i.e. a Viterbi decoder

is implemented in hardware and the rest of the functionality is implemented in software. From a known par-

tition we can extract the software interface (interface to the application code, Figure 19a) and a hardware in-

terface (device register file in Figure 19b).

Figure 19 describes the interfaces of the protocol; the behaviour of the protocol is defined as follows. When

the protocol is called from software the inputs from the application (data, facch_polyn, uch_polyn, data_type)

are read. Then the data and polynomial signals are formatted according to what is indicated by thedata_type

S2S1

c
c

S0Entry ExitS3

S2S1S0
Entry ExitS3

Entry S0123

int_routine {send_event}

Exit

int_routine {send_event}
(c) (d)

void read_MAX190_uCOS(UBYTE channel, UWORD* data) {
state0123:

tmpCNTRL |= (0x07) & channel;
CONTROL* = tmpCNTRL;
OSSemPend(convEvent);
readData* = (HIGH << 8) | LOW; }   // Read all 12 bits

void IntRoutine() {
OSSemPost(convEvent):}

Figure 17. Example of a simple device driver function transformed from ProGram specification to C implementation.
(a) ProGram specification, (b) FSM generated from ProGram, (c) FSM after applying transformation rules, (d) FSM
after eliminating delay states, (e) Generated C code for the read function and generated interrupt routine.

(a)

(e)

(b)

read: bit { tmpCNTR(2..0) = channelNo; } bit {CONTROL = tmpCNTR;} waitReady;
waitReady(int): 1 waitReady

| 0 { readData = HIGH LOW; };

Figure 18. Receiver in IS-54B base station.

Digital Equalizer Digital Channel Decoder

Channel
decoder

De-
Modulator

De-
interleaving

EqualizerSync.
Filter

Speech channel
Control channel



signal and then loaded into the device registers. The device is given a command and starts executing while

the software waits for a ready event from the device. The device can be used on the data multiple times for

each access depending on thedata_typesignal. When the ready event is received by the software, the decoded

data (decoded_data_mem) is read and formatted to the right output signal (decoded_facch, decoded_uch) and

thedecoded_frame_qual register is copied to thespeech_frame_q signal.

7.3. HW/SW communication of an ATM (F4) OAM block

Our second example implements the operation and maintenance (OAM) functions corresponding to the F4

level of the Asynchronous Transfer Mode (ATM) protocol layer [8], see Figure 20. This level handles OAM

functionality concerning fault management, performance monitoring, fault localization, and activation/deac-

tivation of functions. ATM is based on a fixed-size virtual circuit-oriented packet switching methodology. All

ATM traffic is broken into a succession of cells. A cell consists of five bytes of header information and a 48

byte information field. The header field contains control information of the cell (identification, cell loss pri-

ority, routing and switching information).

Figure 21 describes the interfaces of the protocol, the behaviour of the protocol is defined as follows. The

protocol consist of two parts; one for reading OAM cells and one for writing OAM cells from/to the OAM

unit. The read part inputs agen_oam_cellfrom software. Then it waits for the device to be ready to receive

the frame. The data from software is then reformatted and written to theoam_cell_indevice memory of the

decoded_frame_qual

data[260]

facch_polyn[4]

uch_polyn[2]

decoded_facch[8]

decoded_uch[6]

speech_frame_q

Figure 19. (a) Application (SW) interface for the decode data functionality (all signals are 16-bits wide). (b)
Device (HW) interface to the decode circuit, registers and memory organized as 16-bit blocks.

data_type

D
ec

od
e 

da
ta

comand_register

polynomials[4]

decoded_data_mem[8]

undecoded_data_mem[324]

b.a.

control_register

OAM
ATM
cell stream

ATM
cell stream

HW

SW

user cells

OAM cells

155Mb/s

1-2 Mb/s

Figure 20. OAM block in an ATM network (a) and selected HW/SW partitioning (b).

(a) (b)



OAM unit. The write part reads theoam_cell_outdevice memory and reformats it into theoam_cellwhich is

delivered to the software.

7.4. Results from software synthesis

The examples described above have been used to evaluate the system by comparing results generated from

hand written C code (written by us) and by using our approach starting from ProGram. Several experiments

have been conducted with different combinations of the examples, real-time kernels and embedded proces-

sors. Table 6 lists the seven selected configurations. They contain two processors, MC68000 [22] and ARM7

[13], and two real-time kernels,µCOS [19] and CREX [15].

The first column in Table 6 indicates the implementation number used in figures 22 and 23. The second

through fourth columns indicate the configuration. A comparison of the lines of code (LoC) needed to model

the behaviour in C and ProGram code is shown in column 5 and 6. The difference in code size comparing

Program and C code comes from the different levels of abstraction. Finally, the last three columns show the

time in seconds to generate C code from ProGram on an HP 735 workstation. The code generation times (less

than three seconds) show that time to generate new implementations is not an obstacle for an extensive ex-

ploration of different architectures.

# behaviour kernel processor

Modelling [LoC] Code generation time [sec.]

C ProGram
ProGram
to FSM

FSM to C Total

1 MAX197 µCOS ARM 75 20 0.09 0.90 0.99

2 MAX 530 µCOS ARM 41 9 0.06 0.83 0.89

3 TL16552 µCOS ARM 180 118 0.13 1.05 1.18

4 OAM unit CREX MC68000
75 45 0.12 1.00 1.12

5 OAM unit µCOS ARM

6 Channel decoder CREX MC68000
254 75 0.11 1.02 0.13

7 Channel decoder µCOS ARM

Table 6. Code size and code generation times for implementation examples used in Figure 22 and 23.

Figure 21. (a) Application (SW) interface for OAM unit (signals are 8 bits wide), (b) Device (HW) interface
for the OAM unit (registers are 32 bit wide).

O
A

M

b.a.

oam_cell_in[14]

oam_cell_out[14]

control_register

gen_oam_cell[53] oam_cell[53]



1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

T
ex

ec
 =

 1
0y  [u

S
ec

.]

Protocol implementation

Gen. from ProGram
Gen. from C      

Figure 22. Performance for the different implementations described in Table 6.

1 2 3 4 5 6 7
0

500

1000

1500

2000

2500

S
iz

e 
[b

yt
es

]

Protocol implementation

Gen. from ProGram
Gen. from C      

Figure 23. Code size in bytes for the different implementations described in Table 6.



Figures 22 and 23 show a comparison of the performance and code size between implementations gener-

ated from hand written C code and from ProGram. These values are captured using the configurations de-

scribed in Table 7. Figures 22 and 23 show that code size and performance of device drivers generated from

ProGram is similar to those manually written in C. Thus, with our tool we get similar code size and perform-

ance as for hand written code but we get the code automatically from the protocol specification. The code size

numbers are generated by the cross-compilers used to generate the executable [1,15]. The code performance

numbers are generated by taking a mean value from the execution of the device driver code (all functions ex-

cept the initialization functions) with varying inputs. Presented performance values do not include the execu-

tion time for the real-time kernel.

7.5. Results from DMA synthesis

The components described above have been used to compose a set of protocols to evaluate the DMA con-

troller synthesis by comparing results from the protocols modelled in hand written C code and ProGram. From

the ProGram specification the tool generates C code and a DMA controller. The C code is implemented in

software. The DMA controller is generated for an Z80[33] micro processor.

Table 8 shows the synthesis results for the generated DMA controllers. The first column contains the name

of the interfaced device; the second column describes the behaviour of the communication protocols. These

protocol behaviours are composed of an access function and an interrupt routine. Tables 8 and 9 present re-

Processor Speed Memory access time Compiler/Simulator Compiler directive

ARM 33 MHz 30 ns ARM [1] Optimize for speed

MC68000 16 MHz 125 ns INTROL/CODE [15] Optimize

Table 7. Compiler and simulator settings used to generate results.

Device Synthesized behaviour Critical path
Controller gate

count
Total gate

count

MAX197 1. Read buffer (x values at channel ch)1 10 ns 1141 2100

2. Read buffer (x values at channel ch)2 10 ns 1156 2120

3. Read all channels and store in buffer1 10 ns 999 1970

4. Read all channels and store in buffer2 8 ns 1018 1980

MAX530 5. Write x values from a buffer1 12 ns 1086 2150

6. Write x values from a buffer2 12 ns 1101 2170

16552 7. Ring buffers (Rx buffer & Tx buffer) 14 ns 1997 2960

Table 8. Synthesis results for the generated DMA controller.



sults regarding the interrupt routine part of the protocol, i.e. each DMA controller corresponds to an interrupt

routine. The examples are all of the type read or write blocks of data, either of blocking type (i.e. wait for data

transfer to finish) or non-blocking type (no wait for the transfer to finish). Columns three through five present

the synthesis results from an RTL synthesis tool for the LSI 10k technology. The third column presents the

critical path for the generated controller. Columns four and five give the gate count for the generated part of

the DMA controller and the whole DMA controller (i.e. the master interface from the library + generated con-

troller), respectively.

Table 9 compares the performance and bus usage between a pure software solution and the hardware so-

lution with an application specific DMA controller. The first column contains the name of the interfaced de-

vice; the second column gives a reference to the behaviour description in Table 8. Columns four and six give

the performance (calculated as ) numbers for two different configurations, software and

DMA controller, respectively. Columns three and five present the numbers for system bus usage normalized

to the all-software solution, this is calculated as . The sixth column

shows the speed-up for a hardware solution compared to a software solution, calculated as

. This illustrates that the hardware solution results in 8 to 20 times higher per-

formance. But in many cases more important is the reduced bus utilization by a factor between 10 to 20, be-

cause the processor bus is very often a scarce and highly utilized resource. The performance of the generated

DMA controller is not higher than that of a standard DMA controller. The difference is, that ours is automat-

ically generated from the same protocol description as the all-software device driver. Thus, less effort to im-

plement a DMA based interface is required with our method.

From these results we can see that the controller is quite fast (above 70 MHz) even for such an old tech-

nology as LSI 10k. The most likely application area for this is a system on a chip (SoC), but the DMA con-

Device Behaviour
Pure software

With generated DMA
controller Speedup

Bus usage3 Performance4 Bus usage3 Performance4

MAX197 1 100 % 2.9⋅104 s-1 4.7 % 5.6⋅105 s-1 19.4

2 100 % 2.9⋅104 s-1 4.9 % 5.3⋅105 s-1 18.4

3 100 % 3.0⋅104 s-1 4.9 % 5.6⋅105 s-1 18.7

4 100 % 2.9⋅104 s-1 8.5 % 2.5⋅105 s-1 8.6

MAX530 5 100 % 4.2⋅104 s-1 5.1 % 6.7⋅105 s-1 16.0

6 100 % 4.2⋅104 s-1 5.4 % 6.1⋅105 s-1 14.5

TL16552 7 100 % 2.9⋅103 s-1 8.6 % 4.4⋅104 s-1 15.2

Table 9. Performance comparison between pure software implementation and an implementation with software gener-
ated from ProGram combined with a DMA controller generated from ProGram.

performance 1 texec⁄=

usageHW memaccessHW( ) memaccessSW( )⁄=

Speedup texec SW( ) texec HW( )⁄=



troller will work as good as a separate device on a board. With our approach, we achieve a 20 times speed-up

of the communication performance. Considering the size of a system on chip can be > 1M gate, the commu-

nication speedup is achieved at a small cost of the total system area. This makes the application specific DMA

controller solution an appropriate choice if communication performance is a bottleneck.

8. Conclusion

We have presented an approach to hardware/software communication synthesis. Synthesis is done from an

architecture and implementation independent description of a device access protocol. The protocol descrip-

tion can be mapped, according to a designer decision, to a pure software device driver implementation or a

mixed hardware/software device driver using a DMA controller to speed-up the data transfer. The synthesis

procedure maps the generated code to fit the selected real-time kernel and processor. For parts selected to be

implemented as a DMA controller the synthesis procedure generates RTL VHDL code. The generated DMA

controller is connected to the processor bus via a library interface. The synthesis procedures have been tested

with several realistic examples.

Our approach enables a designer toplug-and-playwith IP components without having to go through the

tedious work of writing the interface code for the different components. Instead, the designer just lets the tool

generate the interface code for the selected architecture and configuration, which takes less than 3 seconds for

the presented examples. The components are accessed through the generated API. This way the designer can

evaluate different architectures and configurations, without spending time on rewriting the interface code.

Another major benefit is the ease of design maintenance, i.e. the designer does not need to redo the interface

parts for new design generations. All implementations in our approach are generated from one protocol de-

scription, regardless of kernel, processor and DMA controller. Thus, the probability of design errors is de-

creased since a protocol is only captured once as opposed to other approaches where the same protocol needs

to be captured several times. Hence, implementations for different architectures will be consistent with each

other.

Acknowledgements

This work has been supported by Mid Sweden University, the Swedish National Board for Industrial and

Technical Development - NUTEK, and the Swedish Foundation for Strategic Research SSF.

References

1. ARM Software Development Toolkit - Reference Manual, Version 2.0, Advanced RISC Machines Ltd., 1995.
2. F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A, Jurecska, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli,

E. Sentovich, K. Suzuki, B. Tabbara, Hardware-Software Co-Design of Embedded Systems: The Polis Ap-



proach., Kluwer Academic Press, 1997.
3. B. Bohem, B. Clark. E. Horowitz, C. Westland, R. Madachy, R. Selby, “Cost models for future software life cycle

processes: COCOMO 2.0”, Annals of Software Engineering, Vol. 1, pp. 57-94, 1995.
4. I. Bolsens, H. J. De Man, B. Linn, K. van Rompaey, S. Vercauteren, D. Verkest, “Hardware/Software Co-Design

of Digital Telecommunication Systems”, Proceedings of the IEEE, Vol. 85, No. 3, pp. 391-418, 1997.
5. P. H. Chou, R. B. Ortega, G. Borriello, “The Chinook Hardware/Software Co-Synthesis System”, Proceedings of

the International Symposium on System Synthesis, 1995.
6. P. H. Chou, R. B. Ortega, G. Borriello, “Synthesis of the Hardware/Software Interface in Microcontroller-Based

Systems”, Proceedings of the International Conference on Computer Aided Design, pp. 488-495, 1992.
7. J-M Daveau, G. F. Marchioro, T. Ben-Ismail, A. A. Jerraya, “Protocol selection and interface generation for hw-

sw codesign”, IEEE Transaction on Very Large Scale Integration, Vol. 5, No. 1, pp. 136-144, 1997.
8. M. De Prycker, Asynchronous Transfer Mode, Prentice Hall, 1995.
9. J. C. Días, J. Riesco, P. Plaza, “Design of an ARM based System-on-a-Chip for Pay Phones”, Proceedings of the

International Workshop on IP Based Synthesis and System Design, pp. 101-105, 1998.
10. EIA/TIA Interim Standard, Cellular System Dual-Mode Mobile Station - Base Station Compatibility Standard,

IS-54-B, April, 1992.
11. M. Eisenring, J. Teich, “Domain-Specific Interface Generation from Dataflow Specifications”, Proceedings of

the 6th International Workshop on Hardware/Software Codesign, pp. 43-47, 1998.
12. R. Ernst, Th. Benner, “Communication, Constraints and User Directives in COSYMA”, Technical Report CY-

94-2, Technische Universität Braunschweig, June 1994
13. S. Furber, ARM System Architecture, Addison Wesley Longman, ISBN 0-201-40352-8, 1996.
14. R. Grehan, “Driver Assistance”, Computer design, vol. 36, no. 1, pp. 75-80, 1997.
15. INTROL/CODE - Reference Manual, Introl Inc., Milwaukee, WI 53202 USA, 1999.
16. D. C. R. Jensen, J. Madsen, S. Pedersen, “The Importance of Interfaces: A HW/SW Codesign Case Study”, Pro-

ceedings of 5th International Workshop on Codesign, 1997.
17. A. A. Jerraya, K. O'Brien, “SOLAR: An Intermediate Format for System-Level Modeling and Synthesis”, Com-

puter Aided Software/Hardware Engineering, Ed. J. Rozenblit, IEEE Publisher, chap. 10, 1994.
18. S. C. Johnsson, Yet another compiler compiler, Computing Science Tech. Rep. 32, AT&T Bell Lab. Murray Hill,

1975.
19. J. J. Labrosse, mC/OS - The Real-Time Kernel, R&D Publications, Lawrence, Kansas 66046, 1992.
20. MAX 197 - Multi-Range 12-bit ADC, Data sheet, Maxim Integrated Products, CA.
21. MAX 530 - Multi-Range 12-bit DAC, Data sheet, Maxim Integrated Products, CA.
22. MC68000 Family Reference Manual. Motorola Inc., 1990.
23. R. Niemann, P. Marwedel, “Synthesis of Communicating Controllers for Concurrent Hardware/Software Sys-

tems”, Proceedings of Design automation and Test in Europe, pp. 912-913, 1998.
24. M. O’Nils, “Specification, Synthesis and Validation of Hardware/Software Interfaces”, PhD Thesis, TRITA-

ESD-1999-04, Kungliga Tekniska Högskolan (KTH), Stockholm, Sweden, June 1999.
25. M. O’Nils, J. Öberg, A. Jantsch, “Grammar Based Modelling and Synthesis of Device Drivers and Bus Interfac-

es“, Proceedings of Euromicro Conference, pp. 55-58, 1998.
26. M. O’Nils, A. Jantsch, “Multi-phase Validation of Hardware/Software Interfaces based on Generated Simulation

Models“, Proceedings of IEEE Workshop on High Level Design, Validation and Test, pp. 32-40, 1998.
27. R. B. Ortega, G. Borriello, “Communication Synthesis for Distributed Embedded Systems”, Proceedings of the

International Conference on Computer Aided Design, 1998.
28. R. B. Ortega, L. Lavagno, G. Borriello, “Models and methods for hw/sw intellectual property interfacing”, NATO

ASI on System-level Synthesis, 1998.
29. A. Seawright, U. Holtmann, W. Meyer, B. Pangrle, R. Verbrugghe, J. Buck, “A System for Compiling and De-

bugging Structured Data Processing Controllers”, Proceedings of the European Design Automation Conference,
1996.

30. TL16552 - Dual Asynchronous Communications Element with FIFO, Data sheet, Texas Instruments Inc., 1996.
31. E. Tuggle, “Writing Device Drivers”, Embedded Systems Programming, Jan. 1993, pp. 42-65.
32. F. Vahid, L. Tauro, “An Object-Oriented Communication Library for Hardware-Software CoDesign”, Proceed-

ings of 5th International Workshop on Hardware/Software Codesign, 1997.
33. Z80 - Microprocessor Family User’s Manual, Zilog Inc., 1994.
34. J. Öberg, A. Kumar, A. Hemani, “Grammar-based Hardware Synthesis of Data Communication Protocols”, Pro-



ceedings of the 9th International Symposium on System Synthesis, pp. 14-19, 1996.



Affiliation of Authors

MATTIAS O’NILS mattias@ite.mh.se

Department of Information Technology, Mid Sweden University, SE-851 70 Sundsvall, Sweden

AXEL JANTSCH axel@ele.kth.se

Department of Electronics, Electronic System Design Laboratory, Royal Institute of Technology, Electrum 229, SE-164
40 Kista, Sweden

Footnotes

1. Non-blocking communication.

2. Blocking communication.

3. Bus usage normalized the pure software implementation.

4. Maximum number of interrupts served per second.


